Properties

Label 1386.18.22.a1.a1
Order $ 3^{2} \cdot 7 $
Index $ 2 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{21}:C_3$
Order: \(63\)\(\medspace = 3^{2} \cdot 7 \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(21\)\(\medspace = 3 \cdot 7 \)
Generators: $a^{2}, b^{66}, b^{154}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 3$, and an A-group.

Ambient group ($G$) information

Description: $C_{21}:C_{66}$
Order: \(1386\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \cdot 11 \)
Exponent: \(462\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{22}$
Order: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Automorphism Group: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Outer Automorphisms: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{10}\times S_3\times F_7$
$\operatorname{Aut}(H)$ $S_3\times F_7$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
$W$$F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_{33}$
Normalizer:$C_{21}:C_{66}$
Complements:$C_{22}$
Minimal over-subgroups:$C_{21}:C_{33}$$C_{21}:C_6$
Maximal under-subgroups:$C_{21}$$C_7:C_3$$C_7:C_3$$C_3^2$

Other information

Möbius function$1$
Projective image$C_{21}:C_{66}$