Subgroup ($H$) information
Description: | $C_3^2$ |
Order: | \(9\)\(\medspace = 3^{2} \) |
Index: | \(154\)\(\medspace = 2 \cdot 7 \cdot 11 \) |
Exponent: | \(3\) |
Generators: |
$a^{2}, b^{154}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_{21}:C_{66}$ |
Order: | \(1386\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \cdot 11 \) |
Exponent: | \(462\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{10}\times S_3\times F_7$ |
$\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $7$ |
Möbius function | $-1$ |
Projective image | $C_{21}:C_{66}$ |