Properties

Label 138142.16.8126.b1.h1
Order $ 17 $
Index $ 2 \cdot 17 \cdot 239 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{17}$
Order: \(17\)
Index: \(8126\)\(\medspace = 2 \cdot 17 \cdot 239 \)
Exponent: \(17\)
Generators: $ab^{32}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{4063}:C_{34}$
Order: \(138142\)\(\medspace = 2 \cdot 17^{2} \cdot 239 \)
Exponent: \(8126\)\(\medspace = 2 \cdot 17 \cdot 239 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 17$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{4063}.C_{476}.C_2^2.C_2$
$\operatorname{Aut}(H)$ $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{17}\times C_{34}$
Normalizer:$C_{17}\times C_{34}$
Normal closure:$C_{239}:C_{17}$
Core:$C_1$
Minimal over-subgroups:$C_{239}:C_{17}$$C_{17}^2$$C_{34}$
Maximal under-subgroups:$C_1$
Autjugate subgroups:138142.16.8126.b1.a1138142.16.8126.b1.b1138142.16.8126.b1.c1138142.16.8126.b1.d1138142.16.8126.b1.e1138142.16.8126.b1.f1138142.16.8126.b1.g1138142.16.8126.b1.i1138142.16.8126.b1.j1138142.16.8126.b1.k1138142.16.8126.b1.l1138142.16.8126.b1.m1138142.16.8126.b1.n1138142.16.8126.b1.o1138142.16.8126.b1.p1138142.16.8126.b1.q1

Other information

Number of subgroups in this conjugacy class$239$
Möbius function$-1$
Projective image$C_{4063}:C_{34}$