Properties

Label 138142.16.239.a1.a1
Order $ 2 \cdot 17^{2} $
Index $ 239 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{17}\times C_{34}$
Order: \(578\)\(\medspace = 2 \cdot 17^{2} \)
Index: \(239\)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Generators: $b^{4063}, a, b^{478}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is maximal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a Hall subgroup, elementary for $p = 17$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{4063}:C_{34}$
Order: \(138142\)\(\medspace = 2 \cdot 17^{2} \cdot 239 \)
Exponent: \(8126\)\(\medspace = 2 \cdot 17 \cdot 239 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 17$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{4063}.C_{476}.C_2^2.C_2$
$\operatorname{Aut}(H)$ $\GL(2,17)$, of order \(78336\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 17 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{17}\times C_{34}$
Normalizer:$C_{17}\times C_{34}$
Normal closure:$C_{4063}:C_{34}$
Core:$C_{34}$
Minimal over-subgroups:$C_{4063}:C_{34}$
Maximal under-subgroups:$C_{17}^2$$C_{34}$$C_{34}$$C_{34}$$C_{34}$$C_{34}$$C_{34}$$C_{34}$$C_{34}$$C_{34}$$C_{34}$$C_{34}$$C_{34}$$C_{34}$$C_{34}$$C_{34}$$C_{34}$$C_{34}$$C_{34}$

Other information

Number of subgroups in this conjugacy class$239$
Möbius function$-1$
Projective image$C_{239}:C_{17}$