Subgroup ($H$) information
Description: | $C_2^3\times C_{86}$ |
Order: | \(688\)\(\medspace = 2^{4} \cdot 43 \) |
Index: | \(2\) |
Exponent: | \(86\)\(\medspace = 2 \cdot 43 \) |
Generators: |
$d^{43}, d^{2}, c^{2}, b, a$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, maximal, abelian (hence metabelian and an A-group), and elementary for $p = 2$ (hence hyperelementary).
Ambient group ($G$) information
Description: | $C_2^3.D_{86}$ |
Order: | \(1376\)\(\medspace = 2^{5} \cdot 43 \) |
Exponent: | \(172\)\(\medspace = 2^{2} \cdot 43 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{86}.C_{21}.C_2^6.C_2.\PSL(2,7)$ |
$\operatorname{Aut}(H)$ | $C_{42}\times A_8$ |
$\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(56448\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(688\)\(\medspace = 2^{4} \cdot 43 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_2^3\times C_{86}$ | ||
Normalizer: | $C_2^3.D_{86}$ | ||
Minimal over-subgroups: | $C_2^3.D_{86}$ | ||
Maximal under-subgroups: | $C_2^2\times C_{86}$ | $C_2^2\times C_{86}$ | $C_2^4$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $D_{43}$ |