Properties

Label 1376.16.86.b1.b1
Order $ 2^{4} $
Index $ 2 \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{16}$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(86\)\(\medspace = 2 \cdot 43 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $ab^{43}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a $p$-group.

Ambient group ($G$) information

Description: $C_2\times C_{688}$
Order: \(1376\)\(\medspace = 2^{5} \cdot 43 \)
Exponent: \(688\)\(\medspace = 2^{4} \cdot 43 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Quotient group ($Q$) structure

Description: $C_{86}$
Order: \(86\)\(\medspace = 2 \cdot 43 \)
Exponent: \(86\)\(\medspace = 2 \cdot 43 \)
Automorphism Group: $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{84}.C_2^4$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{688}$
Normalizer:$C_2\times C_{688}$
Complements:$C_{86}$ $C_{86}$
Minimal over-subgroups:$C_{688}$$C_2\times C_{16}$
Maximal under-subgroups:$C_8$
Autjugate subgroups:1376.16.86.b1.a1

Other information

Möbius function$1$
Projective image$C_{86}$