Properties

Label 1376.16.1.a1.a1
Order $ 2^{5} \cdot 43 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{688}$
Order: \(1376\)\(\medspace = 2^{5} \cdot 43 \)
Index: $1$
Exponent: \(688\)\(\medspace = 2^{4} \cdot 43 \)
Generators: $b^{86}, b^{172}, b^{344}, b^{16}, b^{43}, a$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Fitting subgroup, the radical, a direct factor, a Hall subgroup, elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2\times C_{688}$
Order: \(1376\)\(\medspace = 2^{5} \cdot 43 \)
Exponent: \(688\)\(\medspace = 2^{4} \cdot 43 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $0$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{84}.C_2^4$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_{84}.C_2^4$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{688}$
Normalizer:$C_2\times C_{688}$
Complements:$C_1$
Maximal under-subgroups:$C_2\times C_{344}$$C_{688}$$C_{688}$$C_2\times C_{16}$

Other information

Möbius function$1$
Projective image$C_1$