Properties

Label 13759414272.g.18._.B
Order $ 2^{20} \cdot 3^{6} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^{12}.(C_6^4.C_6^2:C_4)$
Order: \(764411904\)\(\medspace = 2^{20} \cdot 3^{6} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(1,32,27,21,2,31,28,22)(3,35,29,24)(4,36,30,23)(5,33,26,20,6,34,25,19)(7,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^{12}.(C_6^4.(C_6:D_6.S_3^2))$
Order: \(13759414272\)\(\medspace = 2^{21} \cdot 3^{8} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(220150628352\)\(\medspace = 2^{25} \cdot 3^{8} \)
$\operatorname{Aut}(H)$ Group of order \(18345885696\)\(\medspace = 2^{23} \cdot 3^{7} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed