Properties

Label 764411904.p
Order \( 2^{20} \cdot 3^{6} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{23} \cdot 3^{7} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \cdot 3 \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,22,3,19,5,24)(2,21,4,20,6,23)(7,32,17,25,10,34,15,30,11,36,14,27,8,31,18,26,9,33,16,29,12,35,13,28), (1,5,4,2,6,3)(7,12,10,8,11,9)(15,16)(19,32,25,20,31,26)(21,33,30)(22,34,29)(23,35,27)(24,36,28), (1,20,6,22,4,24,2,19,5,21,3,23)(7,27,13,34,11,30,16,32,10,25,17,36,8,28,14,33,12,29,15,31,9,26,18,35) >;
 
Copy content gap:G := Group( (1,22,3,19,5,24)(2,21,4,20,6,23)(7,32,17,25,10,34,15,30,11,36,14,27,8,31,18,26,9,33,16,29,12,35,13,28), (1,5,4,2,6,3)(7,12,10,8,11,9)(15,16)(19,32,25,20,31,26)(21,33,30)(22,34,29)(23,35,27)(24,36,28), (1,20,6,22,4,24,2,19,5,21,3,23)(7,27,13,34,11,30,16,32,10,25,17,36,8,28,14,33,12,29,15,31,9,26,18,35) );
 
Copy content sage:G = PermutationGroup(['(1,22,3,19,5,24)(2,21,4,20,6,23)(7,32,17,25,10,34,15,30,11,36,14,27,8,31,18,26,9,33,16,29,12,35,13,28)', '(1,5,4,2,6,3)(7,12,10,8,11,9)(15,16)(19,32,25,20,31,26)(21,33,30)(22,34,29)(23,35,27)(24,36,28)', '(1,20,6,22,4,24,2,19,5,21,3,23)(7,27,13,34,11,30,16,32,10,25,17,36,8,28,14,33,12,29,15,31,9,26,18,35)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(38246053828639458984426001638449926469177385969107783335529789588263527280914678220708909068520115992741627880906558167697762230769852036403454616025998797143029364101559924486101083114235100954113441238614406527703644357091743554563826105288366341188883770972813078675439831761744131992580523544870434154220981036755390445646902653343036550196301195228022285168406295503106793359692047852321671730371235799630371669052914147251128048161121787676000457841710420871372157807385292165156039073487511446555298748449905333002369150071857673220028965899390722989719889416285447795345421102108291595166868261945009613354838243546849326373757443431350412132505490652077588346936653250884360364877342355800456019603753736545397967105809151817515035136095516210406962505880342280121077741044221441470214762872134367804113508773442203387599561153277344056463221087851308893467589411329973597060592107288555232435266543535029378405626404570358323029300935282319278629615218490642294296415636971079298972899371232917005486115981563455855269336202325057157937272398496511625704094014868025897630464368181267974387967343283194073993825764448121680632124219049419152468232408948537313419382720933129212840437254750267470372888690429377353868222225444386226985826204263979681522752507656730945727956226664967214138639568301181096392066735296658503114501281340558704979669133051514292552407787038867324805105891644103237860434761583528414957228321562475634394831466810182219766581573244951606912351437984283986361072677206562632685634393407619727862032180694363790501314326590431456784924037685011905167186278432174859642866178732650447221469649794585442887791505606958707701651828301014012430303933400759122270036019671401491236525498352044329645163478804062036809446524978400951821885121579892863218237419821867780832309517510433956508555346543922445561115702019601548413915979739795723992101392438286344749571254426521485773836923586515598634036493618419497851099986158197099315224032653957976016737944999972114694748814737838970126191863996194660802992101495006313867756367138116710901527701547294832755239076471802565693583246690886415649826957026579261355614920913627343612559108757163662828945059022353912153882087102431690451559013462990672774783903487840256,764411904)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23; q = G.24; r = G.25; s = G.26;
 

Group information

Description:$C_2^{12}.(C_6^4.C_6^2:C_4)$
Order: \(764411904\)\(\medspace = 2^{20} \cdot 3^{6} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(18345885696\)\(\medspace = 2^{23} \cdot 3^{7} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 20, $C_3$ x 6
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 24
Elements 1 593919 1896128 36827136 215486784 111476736 270729216 127401984 764411904
Conjugacy classes   1 421 33 298 2157 40 210 8 3168
Divisions 1 421 27 294 1511 20 104 2 2380
Autjugacy classes 1 179 11 74 513 6 37 1 822

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s \mid b^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([26, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 52, 16954715259, 50725080122, 19843746496, 210, 76882380227, 32803124253, 21753808444, 4252237110, 23691876056, 8317182982, 368, 60338229125, 46051162591, 3418068009, 10614218555, 1153202966, 63419887472, 32248089022, 1867937610, 1642288394, 808991410, 526, 94218380679, 78406548513, 5744494139, 10797291733, 2919032175, 1597140617, 57628959344, 4752871378, 20575021956, 14864284976, 7401643816, 1950010122, 312995288, 502054444, 684, 23788668809, 23675071715, 9511482301, 5832328407, 1840478753, 837704539, 324018405, 6403991, 156979789834, 8223374052, 19857545198, 17753516440, 5444257218, 4274436020, 750403534, 585827148, 92856410, 30997210, 842, 14062404107, 87503390245, 32713739199, 24384458681, 3156506611, 1154896845, 525882407, 192482977, 225430203, 53982420764, 101939950982, 11622776320, 9706060818, 577181084, 42507022, 390373944, 195625130, 217290280, 74605296, 38514020, 5793280, 1000, 149129489613, 136273737639, 12262539809, 12276692155, 2432818869, 9463415, 421424809, 1494051, 157195805, 33703735, 26592657, 19684691, 234914359694, 34502345320, 37421261346, 9790120172, 2746055638, 269146944, 1102362, 572378, 52699414, 26339340, 259652210703, 36333453353, 15992930371, 8792229981, 467431031, 1456610833, 426995883, 214037189, 74041567, 40705017, 1977159, 991265, 107234341360, 38769269802, 18374159300, 10383152926, 3088423848, 1347444218, 57856204, 27782550, 85065776, 48070402, 268180, 128976, 81451858193, 47163617323, 81946785093, 10393463903, 3930301561, 1950594195, 655050413, 325099207, 3010505, 1516675, 122024133522, 153546202412, 18115778374, 41982048672, 10817544938, 5528654500, 1345751022, 667753832, 17286274, 43215372, 53138870, 18388960, 8767842, 4407824, 186470968339, 40079370285, 48859323, 1669973909, 118610095, 48522441, 549451, 224997, 114737143268, 44074570222, 73915444584, 25169547410, 458889100, 1821403734, 128078672, 86329354, 100019784, 52928948, 75017404, 37513782, 593288, 400030, 210838028565, 187077496367, 23965134409, 50105278179, 12580806077, 6575066935, 1534516017, 814702091, 6177829, 58934559, 59222873, 22445587, 10262013, 4911551, 404954338486, 89201870832, 17495805674, 10373094676, 7895781630, 5772065984, 1277988370, 976897788, 80999330, 48023842, 42302802, 7508198, 9174850, 2908434, 330213521687, 225895288369, 92291726667, 56925079013, 11366334847, 3761888985, 1944933299, 600462925, 50016327, 32859473, 86643931, 28007301, 5125871, 4764601, 82002585624, 220351622450, 105611688076, 21941150502, 14253408128, 7916454154, 1844856180, 1353737006, 168761032, 129870258, 94255484, 35989510, 14999736, 5503262, 178450534105, 59388795699, 58631848781, 15872231335, 307947873, 5835018539, 866459125, 1330351983, 429725321, 222747667, 73008285, 11632919, 12302185, 1997943]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.13, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23, G.24, G.25, G.26]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s"]);
 
Copy content gap:G := PcGroupCode(38246053828639458984426001638449926469177385969107783335529789588263527280914678220708909068520115992741627880906558167697762230769852036403454616025998797143029364101559924486101083114235100954113441238614406527703644357091743554563826105288366341188883770972813078675439831761744131992580523544870434154220981036755390445646902653343036550196301195228022285168406295503106793359692047852321671730371235799630371669052914147251128048161121787676000457841710420871372157807385292165156039073487511446555298748449905333002369150071857673220028965899390722989719889416285447795345421102108291595166868261945009613354838243546849326373757443431350412132505490652077588346936653250884360364877342355800456019603753736545397967105809151817515035136095516210406962505880342280121077741044221441470214762872134367804113508773442203387599561153277344056463221087851308893467589411329973597060592107288555232435266543535029378405626404570358323029300935282319278629615218490642294296415636971079298972899371232917005486115981563455855269336202325057157937272398496511625704094014868025897630464368181267974387967343283194073993825764448121680632124219049419152468232408948537313419382720933129212840437254750267470372888690429377353868222225444386226985826204263979681522752507656730945727956226664967214138639568301181096392066735296658503114501281340558704979669133051514292552407787038867324805105891644103237860434761583528414957228321562475634394831466810182219766581573244951606912351437984283986361072677206562632685634393407619727862032180694363790501314326590431456784924037685011905167186278432174859642866178732650447221469649794585442887791505606958707701651828301014012430303933400759122270036019671401491236525498352044329645163478804062036809446524978400951821885121579892863218237419821867780832309517510433956508555346543922445561115702019601548413915979739795723992101392438286344749571254426521485773836923586515598634036493618419497851099986158197099315224032653957976016737944999972114694748814737838970126191863996194660802992101495006313867756367138116710901527701547294832755239076471802565693583246690886415649826957026579261355614920913627343612559108757163662828945059022353912153882087102431690451559013462990672774783903487840256,764411904); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.15; i := G.16; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21; o := G.22; p := G.23; q := G.24; r := G.25; s := G.26;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(38246053828639458984426001638449926469177385969107783335529789588263527280914678220708909068520115992741627880906558167697762230769852036403454616025998797143029364101559924486101083114235100954113441238614406527703644357091743554563826105288366341188883770972813078675439831761744131992580523544870434154220981036755390445646902653343036550196301195228022285168406295503106793359692047852321671730371235799630371669052914147251128048161121787676000457841710420871372157807385292165156039073487511446555298748449905333002369150071857673220028965899390722989719889416285447795345421102108291595166868261945009613354838243546849326373757443431350412132505490652077588346936653250884360364877342355800456019603753736545397967105809151817515035136095516210406962505880342280121077741044221441470214762872134367804113508773442203387599561153277344056463221087851308893467589411329973597060592107288555232435266543535029378405626404570358323029300935282319278629615218490642294296415636971079298972899371232917005486115981563455855269336202325057157937272398496511625704094014868025897630464368181267974387967343283194073993825764448121680632124219049419152468232408948537313419382720933129212840437254750267470372888690429377353868222225444386226985826204263979681522752507656730945727956226664967214138639568301181096392066735296658503114501281340558704979669133051514292552407787038867324805105891644103237860434761583528414957228321562475634394831466810182219766581573244951606912351437984283986361072677206562632685634393407619727862032180694363790501314326590431456784924037685011905167186278432174859642866178732650447221469649794585442887791505606958707701651828301014012430303933400759122270036019671401491236525498352044329645163478804062036809446524978400951821885121579892863218237419821867780832309517510433956508555346543922445561115702019601548413915979739795723992101392438286344749571254426521485773836923586515598634036493618419497851099986158197099315224032653957976016737944999972114694748814737838970126191863996194660802992101495006313867756367138116710901527701547294832755239076471802565693583246690886415649826957026579261355614920913627343612559108757163662828945059022353912153882087102431690451559013462990672774783903487840256,764411904)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23; q = G.24; r = G.25; s = G.26;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(38246053828639458984426001638449926469177385969107783335529789588263527280914678220708909068520115992741627880906558167697762230769852036403454616025998797143029364101559924486101083114235100954113441238614406527703644357091743554563826105288366341188883770972813078675439831761744131992580523544870434154220981036755390445646902653343036550196301195228022285168406295503106793359692047852321671730371235799630371669052914147251128048161121787676000457841710420871372157807385292165156039073487511446555298748449905333002369150071857673220028965899390722989719889416285447795345421102108291595166868261945009613354838243546849326373757443431350412132505490652077588346936653250884360364877342355800456019603753736545397967105809151817515035136095516210406962505880342280121077741044221441470214762872134367804113508773442203387599561153277344056463221087851308893467589411329973597060592107288555232435266543535029378405626404570358323029300935282319278629615218490642294296415636971079298972899371232917005486115981563455855269336202325057157937272398496511625704094014868025897630464368181267974387967343283194073993825764448121680632124219049419152468232408948537313419382720933129212840437254750267470372888690429377353868222225444386226985826204263979681522752507656730945727956226664967214138639568301181096392066735296658503114501281340558704979669133051514292552407787038867324805105891644103237860434761583528414957228321562475634394831466810182219766581573244951606912351437984283986361072677206562632685634393407619727862032180694363790501314326590431456784924037685011905167186278432174859642866178732650447221469649794585442887791505606958707701651828301014012430303933400759122270036019671401491236525498352044329645163478804062036809446524978400951821885121579892863218237419821867780832309517510433956508555346543922445561115702019601548413915979739795723992101392438286344749571254426521485773836923586515598634036493618419497851099986158197099315224032653957976016737944999972114694748814737838970126191863996194660802992101495006313867756367138116710901527701547294832755239076471802565693583246690886415649826957026579261355614920913627343612559108757163662828945059022353912153882087102431690451559013462990672774783903487840256,764411904)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23; q = G.24; r = G.25; s = G.26;
 
Permutation group:Degree $36$ $\langle(1,22,3,19,5,24)(2,21,4,20,6,23)(7,32,17,25,10,34,15,30,11,36,14,27,8,31,18,26,9,33,16,29,12,35,13,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,22,3,19,5,24)(2,21,4,20,6,23)(7,32,17,25,10,34,15,30,11,36,14,27,8,31,18,26,9,33,16,29,12,35,13,28), (1,5,4,2,6,3)(7,12,10,8,11,9)(15,16)(19,32,25,20,31,26)(21,33,30)(22,34,29)(23,35,27)(24,36,28), (1,20,6,22,4,24,2,19,5,21,3,23)(7,27,13,34,11,30,16,32,10,25,17,36,8,28,14,33,12,29,15,31,9,26,18,35) >;
 
Copy content gap:G := Group( (1,22,3,19,5,24)(2,21,4,20,6,23)(7,32,17,25,10,34,15,30,11,36,14,27,8,31,18,26,9,33,16,29,12,35,13,28), (1,5,4,2,6,3)(7,12,10,8,11,9)(15,16)(19,32,25,20,31,26)(21,33,30)(22,34,29)(23,35,27)(24,36,28), (1,20,6,22,4,24,2,19,5,21,3,23)(7,27,13,34,11,30,16,32,10,25,17,36,8,28,14,33,12,29,15,31,9,26,18,35) );
 
Copy content sage:G = PermutationGroup(['(1,22,3,19,5,24)(2,21,4,20,6,23)(7,32,17,25,10,34,15,30,11,36,14,27,8,31,18,26,9,33,16,29,12,35,13,28)', '(1,5,4,2,6,3)(7,12,10,8,11,9)(15,16)(19,32,25,20,31,26)(21,33,30)(22,34,29)(23,35,27)(24,36,28)', '(1,20,6,22,4,24,2,19,5,21,3,23)(7,27,13,34,11,30,16,32,10,25,17,36,8,28,14,33,12,29,15,31,9,26,18,35)'])
 
Transitive group: 36T90094 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $C_2^{18}$ . $(\He_3^2:C_4)$ $C_2^{12}$ . $(C_6^4.C_6^2:C_4)$ $C_2^{17}$ . $(C_2\times \He_3^2:C_4)$ $C_2^{14}$ . $(C_3^4:(A_4^2:C_4))$ all 35

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2} \times C_{6}^{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 74 normal subgroups (43 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^{12}.C_2^6.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $\He_3^2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3168 \times 3168$ character table is not available for this group.

Rational character table

The $2380 \times 2380$ rational character table is not available for this group.