Properties

Label 1372.5.7.b1.a1
Order $ 2^{2} \cdot 7^{2} $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:C_{28}$
Order: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Index: \(7\)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a^{7}, a^{14}, b^{7}, a^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{49}:C_{28}$
Order: \(1372\)\(\medspace = 2^{2} \cdot 7^{3} \)
Exponent: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6\times C_{49}:C_7:C_6$
$\operatorname{Aut}(H)$ $C_{14}:C_6^2$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$C_{14}:C_6^2$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(7\)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_{14}$
Normalizer:$C_7:C_{28}$
Normal closure:$C_{49}:C_{28}$
Core:$C_7\times C_{14}$
Minimal over-subgroups:$C_{49}:C_{28}$
Maximal under-subgroups:$C_7\times C_{14}$$C_{28}$$C_7:C_4$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-1$
Projective image$D_{49}$