Properties

Label 1350.92.450.a1.b1
Order $ 3 $
Index $ 2 \cdot 3^{2} \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(450\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(3\)
Generators: $a^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{15}^2:S_3$
Order: \(1350\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_3\times C_5^2:S_3$
Order: \(450\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $C_5^2:(C_4\times D_6)$, of order \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{10}).A_4.C_6.C_2^3$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{15}^2:S_3$
Normalizer:$C_{15}^2:S_3$
Complements:$C_3\times C_5^2:S_3$ $C_3\times C_5^2:S_3$ $C_3\times C_5^2:S_3$
Minimal over-subgroups:$C_{15}$$C_{15}$$C_3^2$$C_3^2$$C_3^2$$C_6$
Maximal under-subgroups:$C_1$
Autjugate subgroups:1350.92.450.a1.a11350.92.450.a1.c11350.92.450.a1.d1

Other information

Möbius function$75$
Projective image$C_3\times C_5^2:S_3$