Properties

Label 1350.92.225.a1.b1
Order $ 2 \cdot 3 $
Index $ 3^{2} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(225\)\(\medspace = 3^{2} \cdot 5^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{3}, a^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{15}^2:S_3$
Order: \(1350\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{10}).A_4.C_6.C_2^3$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times C_{30}$
Normalizer:$C_3\times C_{30}$
Normal closure:$C_3\times C_5^2:S_3$
Core:$C_3$
Minimal over-subgroups:$C_{30}$$C_3\times D_5$$C_3\times C_6$$C_3\times S_3$
Maximal under-subgroups:$C_3$$C_2$
Autjugate subgroups:1350.92.225.a1.a11350.92.225.a1.c11350.92.225.a1.d1

Other information

Number of subgroups in this conjugacy class$15$
Möbius function$-5$
Projective image$C_3\times C_5^2:S_3$