Properties

Label 1344.9867.21.a1.a1
Order $ 2^{6} $
Index $ 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4.D_4$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(21\)\(\medspace = 3 \cdot 7 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b, c, d^{21}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $D_{84}.D_4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^3\times C_6).C_2^4$
$\operatorname{Aut}(H)$ $D_8:C_2\times S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times D_4^2$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_4.D_4$
Normal closure:$D_{84}.D_4$
Core:$D_4:C_2$
Minimal over-subgroups:$Q_{16}.D_{14}$$D_8.D_6$
Maximal under-subgroups:$D_8:C_2$$C_4.C_2^3$$Q_{16}:C_2$$C_4.C_2^3$$Q_{16}:C_2$$\OD_{16}:C_2$$C_2\times Q_{16}$$D_8:C_2$$D_8:C_2$$Q_{16}:C_2$$Q_{16}:C_2$$Q_{16}:C_2$$Q_{16}:C_2$$C_2\times Q_{16}$$C_2\times Q_{16}$

Other information

Number of subgroups in this conjugacy class$21$
Möbius function$1$
Projective image$D_{42}:D_4$