Subgroup ($H$) information
Description: | $Q_8\times C_{21}$ |
Order: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Generators: |
$ac^{42}, d^{2}, c^{8}, c^{42}d^{3}, c^{28}$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
Description: | $C_{84}.C_2^4$ |
Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $D_4$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $2$ |
Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_{42}\times A_4).C_6.C_2^5$ |
$\operatorname{Aut}(H)$ | $C_2\times C_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times C_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
$W$ | $C_2^4$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
Centralizer: | $C_{84}$ | ||
Normalizer: | $C_{84}.C_2^4$ | ||
Minimal over-subgroups: | $D_4:C_{42}$ | $D_{28}:C_6$ | $D_{84}:C_2$ |
Maximal under-subgroups: | $C_{84}$ | $C_7\times Q_8$ | $C_3\times Q_8$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $D_{42}:C_2^3$ |