Properties

Label 1344.9828.16.c1
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{84}$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $ac^{42}, c^{8}, c^{28}, d^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times D_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{42}\times A_4).C_6.C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{84}$
Normalizer:$C_{84}.C_2^4$
Minimal over-subgroups:$C_2\times C_{84}$$D_4\times C_{21}$$Q_8\times C_{21}$$C_{12}\times D_7$$C_3\times D_{28}$$C_4\times D_{21}$$D_{84}$
Maximal under-subgroups:$C_{42}$$C_{28}$$C_{12}$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$D_{42}:C_2^3$