Properties

Label 1344.9827.48.a1
Order $ 2^{2} \cdot 7 $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{14}$
Order: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $b^{2}d^{9}, c^{2}, d^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_6:D_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^4:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{42}\times A_4).C_6.C_2^5$
$\operatorname{Aut}(H)$ $C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_6:C_{56}$
Normalizer:$C_{84}.C_2^4$
Minimal over-subgroups:$C_2\times C_{42}$$C_2\times C_{28}$$C_7\times D_4$$C_7:D_4$$C_7:D_4$$C_2\times D_{14}$$C_{14}:C_4$
Maximal under-subgroups:$C_{14}$$C_{14}$$C_2^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$D_{42}:C_2^3$