Subgroup ($H$) information
Description: | $C_2\times C_{42}$ |
Order: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Index: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Generators: |
$b^{2}d^{9}, d^{4}, c^{2}, d^{6}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_{84}.C_2^4$ |
Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2\times D_4$ |
Order: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \) |
Outer Automorphisms: | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
Nilpotency class: | $2$ |
Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_{42}\times A_4).C_6.C_2^5$ |
$\operatorname{Aut}(H)$ | $C_6\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
$\operatorname{res}(S)$ | $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
$W$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $3$ |
Number of conjugacy classes in this autjugacy class | $3$ |
Möbius function | $0$ |
Projective image | $D_{42}:C_2^3$ |