Subgroup ($H$) information
| Description: | $C_2^2$ | 
| Order: | \(4\)\(\medspace = 2^{2} \) | 
| Index: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) | 
| Exponent: | \(2\) | 
| Generators: | $ab, d^{6}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
| Description: | $(C_3\times Q_8):D_{28}$ | 
| Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) | 
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^4.(C_3\times C_{21}).C_6.C_2^6$ | 
| $\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
| $\operatorname{res}(S)$ | $C_2$, of order \(2\) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1536\)\(\medspace = 2^{9} \cdot 3 \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
| Centralizer: | $C_2^2\times C_4$ | ||||
| Normalizer: | $D_4:C_2^2$ | ||||
| Normal closure: | $C_2\times D_{42}$ | ||||
| Core: | $C_2$ | ||||
| Minimal over-subgroups: | $D_{14}$ | $D_6$ | $C_2^3$ | $C_2\times C_4$ | $D_4$ | 
| Maximal under-subgroups: | $C_2$ | $C_2$ | 
Other information
| Number of subgroups in this autjugacy class | $126$ | 
| Number of conjugacy classes in this autjugacy class | $3$ | 
| Möbius function | $0$ | 
| Projective image | $D_{42}:C_2^3$ | 
