Subgroup ($H$) information
| Description: | $D_4$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Index: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$abc, d^{9}$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Ambient group ($G$) information
| Description: | $(C_3\times Q_8):D_{28}$ |
| Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^4.(C_3\times C_{21}).C_6.C_2^6$ |
| $\operatorname{Aut}(H)$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| $\operatorname{res}(S)$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
| Centralizer: | $C_2\times C_4$ | |||
| Normalizer: | $D_4:C_2^2$ | |||
| Normal closure: | $C_2\times D_{84}$ | |||
| Core: | $C_4$ | |||
| Minimal over-subgroups: | $D_{28}$ | $D_{12}$ | $C_2\times D_4$ | $D_4:C_2$ |
| Maximal under-subgroups: | $C_4$ | $C_2^2$ |
Other information
| Number of subgroups in this autjugacy class | $252$ |
| Number of conjugacy classes in this autjugacy class | $6$ |
| Möbius function | $0$ |
| Projective image | $D_{42}:C_2^3$ |