Properties

Label 1344.9365.4.o1.a1
Order $ 2^{4} \cdot 3 \cdot 7 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6\times D_{14}$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 13 & 0 \\ 0 & 29 \end{array}\right), \left(\begin{array}{rr} 1 & 60 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 43 & 0 \\ 0 & 43 \end{array}\right), \left(\begin{array}{rr} 71 & 0 \\ 0 & 71 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 21 & 83 \end{array}\right), \left(\begin{array}{rr} 1 & 21 \\ 21 & 22 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{21}:D_4^2$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8\times S_3\times F_7$
$\operatorname{Aut}(H)$ $S_3\times C_2^2:S_4\times F_7$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$D_6\times D_{14}$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_{21}:D_4^2$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$D_{42}:D_4$$D_{42}:C_2^3$$D_6:D_{28}$
Maximal under-subgroups:$D_6\times C_{14}$$C_6\times D_{14}$$C_2\times D_{42}$$S_3\times D_{14}$$S_3\times D_{14}$$S_3\times D_{14}$$S_3\times D_{14}$$S_3\times D_{14}$$C_2^2\times D_{14}$$C_2^2\times D_6$

Other information

Möbius function not computed
Projective image$D_6\times D_{14}$