Subgroup ($H$) information
Description: | $D_6:D_{28}$ |
Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
Index: | \(2\) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Generators: |
$\left(\begin{array}{rr}
13 & 0 \\
0 & 29
\end{array}\right), \left(\begin{array}{rr}
1 & 21 \\
21 & 22
\end{array}\right), \left(\begin{array}{rr}
57 & 14 \\
35 & 15
\end{array}\right), \left(\begin{array}{rr}
29 & 0 \\
0 & 29
\end{array}\right), \left(\begin{array}{rr}
69 & 70 \\
14 & 27
\end{array}\right), \left(\begin{array}{rr}
1 & 60 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
71 & 0 \\
0 & 71
\end{array}\right)$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $C_{21}:D_4^2$ |
Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^8\times S_3\times F_7$ |
$\operatorname{Aut}(H)$ | $C_2^6\times S_3\times F_7$ |
$\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $D_6\times D_{14}$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
Related subgroups
Other information
Möbius function | not computed |
Projective image | $D_6\times D_{14}$ |