Properties

Label 1344.8700.7.a1
Order $ 2^{6} \cdot 3 $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2^2\times Q_8):S_3$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(7\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, d^{14}, b^{2}, b, c^{2}, c^{3}, d^{21}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_{12}).D_{28}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times C_{42}).C_6.C_2^6$
$\operatorname{Aut}(H)$ $C_3:(C_2\times C_2^7.C_2^4)$
$\card{W}$\(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_2^2\times Q_8):S_3$
Normal closure:$(C_2\times C_{12}).D_{28}$
Core:$C_2^3.D_6$
Minimal over-subgroups:$(C_2\times C_{12}).D_{28}$
Maximal under-subgroups:$C_2^3.D_6$$C_2^3.D_6$$D_{12}:C_2^2$$C_6.C_2^4$$D_6:Q_8$$C_{12}.D_4$$C_{12}.D_4$$C_4^2.C_2^2$

Other information

Number of subgroups in this autjugacy class$7$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed