Properties

Label 1344.8700.168.g1
Order $ 2^{3} $
Index $ 2^{3} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ac^{3}, b^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $(C_2\times C_{12}).D_{28}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times C_{42}).C_6.C_2^6$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^2\times C_{12}$
Normalizer:$(C_2^2\times Q_8):S_3$
Normal closure:$C_{14}:C_4$
Core:$C_2^2$
Minimal over-subgroups:$C_{14}:C_4$$C_2\times C_{12}$$C_2^2\times C_4$$C_2^2:C_4$$C_2\times Q_8$$C_2\times Q_8$$C_4:C_4$
Maximal under-subgroups:$C_2^2$$C_4$

Other information

Number of subgroups in this autjugacy class$28$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image not computed