Subgroup ($H$) information
| Description: | $C_{12}$ | 
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Index: | \(112\)\(\medspace = 2^{4} \cdot 7 \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | 
		
    $ad^{21}, d^{8}, d^{12}$
    
    
    
         | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $D_{168}:C_2^2$ | 
| Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) | 
| Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{42}.(C_2^5\times C_6).C_2$ | 
| $\operatorname{Aut}(H)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) | 
| $\operatorname{res}(S)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \) | 
| $W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $2$ | 
| Möbius function | $0$ | 
| Projective image | $D_{12}:D_{14}$ |