Properties

Label 1344.8601.16.l1.a1
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{84}$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $ad^{21}, c^{2}, d^{12}, d^{8}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $D_{168}:C_2^2$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2$
$\operatorname{Aut}(H)$ $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{84}$
Normalizer:$C_{84}.C_2^3$
Normal closure:$Q_8\times C_{21}$
Core:$C_{42}$
Minimal over-subgroups:$Q_8\times C_{21}$$S_3\times C_{28}$$C_{12}\times D_7$$D_{84}$$C_4\times D_{21}$$C_{21}:Q_8$$C_{21}:Q_8$
Maximal under-subgroups:$C_{42}$$C_{28}$$C_{12}$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{12}:D_{14}$