Properties

Label 1344.8525.3.a1
Order $ 2^{6} \cdot 7 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_{16}.D_{14}$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Index: \(3\)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $a, c^{12}, c^{3}, d^{7}, b, d^{2}, c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{56}.D_6$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_{84}).C_6.C_2^6$
$\operatorname{Aut}(H)$ $C_{28}.(C_2^5\times C_6).C_2$
$\card{W}$\(224\)\(\medspace = 2^{5} \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$Q_{16}.D_{14}$
Normal closure:$D_{56}.D_6$
Core:$D_{56}:C_2$
Minimal over-subgroups:$D_{56}.D_6$
Maximal under-subgroups:$D_{56}:C_2$$Q_8.D_{14}$$C_{28}.D_4$$C_8.D_{14}$$C_{14}\times Q_{16}$$Q_{16}:D_7$$D_{56}:C_2$$D_7\times Q_{16}$$D_4.D_4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed