Properties

Label 1344.7781.28.f1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times C_6$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a, d^{28}, b, c^{2}, d^{42}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $(C_2\times D_{14}):D_{12}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^4$
$\operatorname{Aut}(H)$ $C_2\times A_8$, of order \(40320\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^3\times C_6$
Normalizer:$C_2^3:D_{12}$
Normal closure:$C_{42}:C_2^3$
Core:$C_2^2\times C_6$
Minimal over-subgroups:$C_{42}:C_2^3$$C_2^3:D_6$$C_2^3:D_6$$C_2^3:C_{12}$
Maximal under-subgroups:$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^4$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function not computed
Projective image not computed