Properties

Label 1344.7781.24.m1.a1
Order $ 2^{3} \cdot 7 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{14}$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $bc, d^{42}, d^{12}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $(C_2\times D_{14}):D_{12}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^4$
$\operatorname{Aut}(H)$ $C_6\times \GL(3,2)$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_{14}$
Normalizer:$(C_2\times D_{14}):D_4$
Normal closure:$D_6\times C_{14}$
Core:$C_2\times C_{14}$
Minimal over-subgroups:$D_6\times C_{14}$$D_4\times C_{14}$$C_{14}:D_4$$C_2^2\times D_{14}$$C_{14}:D_4$$C_{14}:D_4$$C_2^2:C_{28}$$C_2^2:C_{28}$
Maximal under-subgroups:$C_2\times C_{14}$$C_2\times C_{14}$$C_2\times C_{14}$$C_2\times C_{14}$$C_2^3$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed