Properties

Label 1344.6795.6.e1.a1
Order $ 2^{5} \cdot 7 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{28}:C_2^2$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $a, d^{8}, c^{3}d, d^{14}, bd^{49}, d^{28}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_8:C_2\times F_7$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7.(C_3\times D_4^2).C_2^2$
$\operatorname{Aut}(H)$ $F_7\times D_4^2$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_7\times D_4^2$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2\times D_4\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_8:C_2\times F_7$
Complements:$C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$
Minimal over-subgroups:$(D_4\times C_{14}):C_6$$D_8:D_{14}$
Maximal under-subgroups:$D_4\times C_{14}$$D_{28}:C_2$$C_7:\OD_{16}$$C_7:D_8$$C_7:D_8$$C_7:\SD_{16}$$C_7:\SD_{16}$$D_8:C_2$

Other information

Möbius function$1$
Projective image$C_2\times D_4\times F_7$