Subgroup ($H$) information
| Description: | $D_8:D_{14}$ |
| Order: | \(448\)\(\medspace = 2^{6} \cdot 7 \) |
| Index: | \(3\) |
| Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
| Generators: |
$a, d^{28}, c^{3}, d^{7}, b, d^{8}, d^{42}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $D_8:C_2\times F_7$ |
| Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
| Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_3$ |
| Order: | \(3\) |
| Exponent: | \(3\) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_7.(C_3\times D_4^2).C_2^2$ |
| $\operatorname{Aut}(H)$ | $C_2\times D_4^2\times F_7$ |
| $\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | $1$ |
| $W$ | $C_2\times D_4\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
Related subgroups
Other information
| Möbius function | $-1$ |
| Projective image | $C_2\times D_4\times F_7$ |