Subgroup ($H$) information
| Description: | $C_2\times C_{28}$ | 
| Order: | \(56\)\(\medspace = 2^{3} \cdot 7 \) | 
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
| Generators: | 
		
    $b^{2}, c^{8}, c^{28}, c^{42}$
    
    
    
         | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_{12}.(C_2\times D_{28})$ | 
| Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) | 
| Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2\times D_6$ | 
| Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Automorphism Group: | $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) | 
| Outer Automorphisms: | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $2$ | 
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{42}.(C_2^5\times C_6).C_2^2$ | 
| $\operatorname{Aut}(H)$ | $C_6\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| $\card{W}$ | \(4\)\(\medspace = 2^{2} \) | 
Related subgroups
Other information
| Möbius function | not computed | 
| Projective image | not computed |