Properties

Label 1344.4118
Order \( 2^{6} \cdot 3 \cdot 7 \)
Exponent \( 2^{3} \cdot 3 \cdot 7 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{9} \cdot 3^{2} \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \cdot 3 \)
Perm deg. $42$
Trans deg. $672$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := SmallGroup(1344, 4118);
 
Copy content gap:G := SmallGroup(1344, 4118);
 
Copy content sage_gap:G = libgap.SmallGroup(1344, 4118)
 
Copy content comment:Define the group as a permutation group
 
Copy content sage:G = PermutationGroup(['(2,3)(4,5)(6,7)(11,12,17,22)(13,23,27,33)(14,28,30,36)(15,21,16,20)(18,25,34,26)(19,31,35,29)(24,38,40,32)(37,41,42,39)', '(9,10)(11,13,15,25,17,27,16,26)(12,18,20,33,22,34,21,23)(14,24,31,41,30,40,29,39)(19,32,36,42,35,38,28,37)', '(11,14)(12,19)(13,24)(15,31)(16,29)(17,30)(18,32)(20,36)(21,28)(22,35)(23,37)(25,41)(26,39)(27,40)(33,42)(34,38)', '(11,15,17,16)(12,20,22,21)(13,25,27,26)(14,29,30,31)(18,33,34,23)(19,28,35,36)(24,39,40,41)(32,37,38,42)', '(11,16,17,15)(12,21,22,20)(13,26,27,25)(14,29,30,31)(18,23,34,33)(19,28,35,36)(24,39,40,41)(32,37,38,42)', '(11,17)(12,22)(13,27)(14,30)(15,16)(18,34)(19,35)(20,21)(23,33)(24,40)(25,26)(28,36)(29,31)(32,38)(37,42)(39,41)', '(8,9,10)', '(1,2,4,6,7,5,3)'])
 

Group information

Description:$C_{12}.(C_2\times D_{28})$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_{42}.(C_2^5\times C_6).C_2^2$, of order \(32256\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 6, $C_3$, $C_7$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 7 8 12 14 21 24 28 42 56 84
Elements 1 7 2 232 14 6 272 128 42 12 112 48 84 288 96 1344
Conjugacy classes   1 3 1 5 3 3 7 5 12 3 2 15 12 30 15 117
Divisions 1 3 1 5 3 1 5 4 3 1 1 3 3 3 3 40
Autjugacy classes 1 3 1 5 3 1 5 4 3 1 1 3 3 3 3 40

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 6 8 12 24 48
Irr. complex chars.   8 62 40 0 7 0 0 0 117
Irr. rational chars. 8 8 5 4 2 8 3 2 40

Minimal presentations

Permutation degree:$42$
Transitive degree:$672$
Rank: $3$
Inequivalent generating triples: $21504$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 8 16 96
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: $\langle a, b, c, d \mid a^{2}=c^{56}=d^{3}=[a,c]=[a,d]=[b,d]=1, b^{4}=c^{28}, b^{a}=b^{3}, c^{b}=c^{55}, d^{c}=d^{2} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([8, -2, -2, -2, -2, -2, -2, -7, -3, 97, 41, 5474, 1362, 7051, 91, 8652, 116, 9997, 141, 10766, 7199]); a,b,c,d := Explode([G.1, G.2, G.4, G.8]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "c4", "c8", "d"]);
 
Copy content gap:G := PcGroupCode(1508260238289014216294970420607956339901133639548447,1344); a := G.1; b := G.2; c := G.4; d := G.8;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1508260238289014216294970420607956339901133639548447,1344)'); a = G.1; b = G.2; c = G.4; d = G.8;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1508260238289014216294970420607956339901133639548447,1344)'); a = G.1; b = G.2; c = G.4; d = G.8;
 
Permutation group:Degree $42$ $\langle(2,3)(4,5)(6,7)(11,12,17,22)(13,23,27,33)(14,28,30,36)(15,21,16,20)(18,25,34,26) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 42 | (2,3)(4,5)(6,7)(11,12,17,22)(13,23,27,33)(14,28,30,36)(15,21,16,20)(18,25,34,26)(19,31,35,29)(24,38,40,32)(37,41,42,39), (9,10)(11,13,15,25,17,27,16,26)(12,18,20,33,22,34,21,23)(14,24,31,41,30,40,29,39)(19,32,36,42,35,38,28,37), (11,14)(12,19)(13,24)(15,31)(16,29)(17,30)(18,32)(20,36)(21,28)(22,35)(23,37)(25,41)(26,39)(27,40)(33,42)(34,38), (11,15,17,16)(12,20,22,21)(13,25,27,26)(14,29,30,31)(18,33,34,23)(19,28,35,36)(24,39,40,41)(32,37,38,42), (11,16,17,15)(12,21,22,20)(13,26,27,25)(14,29,30,31)(18,23,34,33)(19,28,35,36)(24,39,40,41)(32,37,38,42), (11,17)(12,22)(13,27)(14,30)(15,16)(18,34)(19,35)(20,21)(23,33)(24,40)(25,26)(28,36)(29,31)(32,38)(37,42)(39,41), (8,9,10), (1,2,4,6,7,5,3) >;
 
Copy content gap:G := Group( (2,3)(4,5)(6,7)(11,12,17,22)(13,23,27,33)(14,28,30,36)(15,21,16,20)(18,25,34,26)(19,31,35,29)(24,38,40,32)(37,41,42,39), (9,10)(11,13,15,25,17,27,16,26)(12,18,20,33,22,34,21,23)(14,24,31,41,30,40,29,39)(19,32,36,42,35,38,28,37), (11,14)(12,19)(13,24)(15,31)(16,29)(17,30)(18,32)(20,36)(21,28)(22,35)(23,37)(25,41)(26,39)(27,40)(33,42)(34,38), (11,15,17,16)(12,20,22,21)(13,25,27,26)(14,29,30,31)(18,33,34,23)(19,28,35,36)(24,39,40,41)(32,37,38,42), (11,16,17,15)(12,21,22,20)(13,26,27,25)(14,29,30,31)(18,23,34,33)(19,28,35,36)(24,39,40,41)(32,37,38,42), (11,17)(12,22)(13,27)(14,30)(15,16)(18,34)(19,35)(20,21)(23,33)(24,40)(25,26)(28,36)(29,31)(32,38)(37,42)(39,41), (8,9,10), (1,2,4,6,7,5,3) );
 
Copy content sage:G = PermutationGroup(['(2,3)(4,5)(6,7)(11,12,17,22)(13,23,27,33)(14,28,30,36)(15,21,16,20)(18,25,34,26)(19,31,35,29)(24,38,40,32)(37,41,42,39)', '(9,10)(11,13,15,25,17,27,16,26)(12,18,20,33,22,34,21,23)(14,24,31,41,30,40,29,39)(19,32,36,42,35,38,28,37)', '(11,14)(12,19)(13,24)(15,31)(16,29)(17,30)(18,32)(20,36)(21,28)(22,35)(23,37)(25,41)(26,39)(27,40)(33,42)(34,38)', '(11,15,17,16)(12,20,22,21)(13,25,27,26)(14,29,30,31)(18,33,34,23)(19,28,35,36)(24,39,40,41)(32,37,38,42)', '(11,16,17,15)(12,21,22,20)(13,26,27,25)(14,29,30,31)(18,23,34,33)(19,28,35,36)(24,39,40,41)(32,37,38,42)', '(11,17)(12,22)(13,27)(14,30)(15,16)(18,34)(19,35)(20,21)(23,33)(24,40)(25,26)(28,36)(29,31)(32,38)(37,42)(39,41)', '(8,9,10)', '(1,2,4,6,7,5,3)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $C_{21}$ $\,\rtimes\,$ $(C_8.D_4)$ $C_3$ $\,\rtimes\,$ $(C_{56}.D_4)$ $(C_{42}:Q_{16})$ $\,\rtimes\,$ $C_2$ $(C_{12}.D_{28})$ $\,\rtimes\,$ $C_2$ all 7
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $(C_{28}.D_4)$ . $S_3$ $C_{28}$ . $(S_3\times D_4)$ $(Q_8\times C_{21})$ . $D_4$ $(C_{14}:Q_8)$ . $D_6$ all 48

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 1380 subgroups in 200 conjugacy classes, 60 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $(C_2\times C_6):D_{28}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2\times C_{84}$ $G/G' \simeq$ $C_2^3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2\times C_4$ $G/\Phi \simeq$ $S_3\times D_{14}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $D_4:C_{42}$ $G/\operatorname{Fit} \simeq$ $C_2^2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_{12}.(C_2\times D_{28})$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{42}$ $G/\operatorname{soc} \simeq$ $C_4:D_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_8.D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$

Subgroup diagram and profile

Series

Derived series $C_{12}.(C_2\times D_{28})$ $\rhd$ $C_2\times C_{84}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_{12}.(C_2\times D_{28})$ $\rhd$ $C_{84}.D_4$ $\rhd$ $D_4:C_{42}$ $\rhd$ $C_2\times C_{84}$ $\rhd$ $C_{84}$ $\rhd$ $C_{42}$ $\rhd$ $C_{21}$ $\rhd$ $C_3$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_{12}.(C_2\times D_{28})$ $\rhd$ $C_2\times C_{84}$ $\rhd$ $C_{42}$ $\rhd$ $C_{21}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$ $\lhd$ $C_2\times C_4$ $\lhd$ $D_4:C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $117 \times 117$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $40 \times 40$ rational character table.