Subgroup ($H$) information
Description: | $C_2\times D_{42}$ |
Order: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Generators: |
$acd^{21}, d^{42}, d^{28}, c^{2}, d^{12}$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
Description: | $(C_2\times C_{12}):D_{28}$ |
Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | Group of order \(129024\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 7 \) |
$\operatorname{Aut}(H)$ | $S_3\times S_4\times F_7$, of order \(6048\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 7 \) |
$\card{W}$ | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $2$ |
Möbius function | not computed |
Projective image | not computed |