Properties

Label 1344.3587.4.l1.b1
Order $ 2^{4} \cdot 3 \cdot 7 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:D_{28}$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $a, d^{12}, d^{42}, c^{2}, bc^{3}d^{21}, d^{28}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_{12}):D_{28}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(129024\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_{42}.(C_2^4\times C_6).C_2$
$\card{W}$\(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$D_{42}:C_2^3$
Normal closure:$D_{42}:C_2^3$
Core:$C_6:C_{28}$
Minimal over-subgroups:$D_{42}:C_2^3$
Maximal under-subgroups:$C_6:C_{28}$$C_6\times D_{14}$$C_2\times D_{42}$$C_3:D_{28}$$C_3:D_{28}$$C_3:D_{28}$$C_3:D_{28}$$C_2\times D_{28}$$C_6:D_4$
Autjugate subgroups:1344.3587.4.l1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed