Subgroup ($H$) information
Description: | $C_{48}.C_4$ |
Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Index: | \(7\) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Generators: |
$a, b^{24}, b^{12}, b^{3}, b^{16}, a^{2}, b^{18}$
|
Derived length: | $2$ |
The subgroup is maximal, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_{28}.D_{24}$ |
Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
Exponent: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{84}.(C_2^5\times C_6).C_2$ |
$\operatorname{Aut}(H)$ | $D_6\times D_{16}:C_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
$\operatorname{res}(S)$ | $D_6\times D_8:C_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
$W$ | $D_{24}$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $7$ |
Möbius function | $-1$ |
Projective image | $C_7:D_{24}$ |