Properties

Label 1344.262.7.a1.a1
Order $ 2^{6} \cdot 3 $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{48}.C_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(7\)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $a, b^{24}, b^{12}, b^{3}, b^{16}, a^{2}, b^{18}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{28}.D_{24}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{84}.(C_2^5\times C_6).C_2$
$\operatorname{Aut}(H)$ $D_6\times D_{16}:C_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(S)$$D_6\times D_8:C_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$D_{24}$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{48}.C_4$
Normal closure:$C_{28}.D_{24}$
Core:$C_{24}.C_4$
Minimal over-subgroups:$C_{28}.D_{24}$
Maximal under-subgroups:$C_{24}.C_4$$C_{24}.C_4$$C_2\times C_{48}$$C_{16}.C_4$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-1$
Projective image$C_7:D_{24}$