Properties

Label 1344.11704.7.a1
Order $ 2^{6} \cdot 3 $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5\times C_6$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(7\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 1 & 14 \\ 14 & 15 \end{array}\right), \left(\begin{array}{rr} 15 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 25 \end{array}\right), \left(\begin{array}{rr} 1 & 14 \\ 14 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is maximal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a Hall subgroup, and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_2^5\times F_7$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.\GL(5,2)\times F_7$
$\operatorname{Aut}(H)$ $C_2\times \GL(6,2)$, of order \(40317419520\)\(\medspace = 2^{16} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31 \)
$\operatorname{res}(S)$$C_2^5.\GL(5,2)$, of order \(319979520\)\(\medspace = 2^{15} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^5\times C_6$
Normalizer:$C_2^5\times C_6$
Normal closure:$C_2^5\times F_7$
Core:$C_2^5$
Minimal over-subgroups:$C_2^5\times F_7$
Maximal under-subgroups:$C_2^4\times C_6$$C_2^4\times C_6$$C_2^6$

Other information

Number of subgroups in this autjugacy class$7$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$F_7$