Properties

Label 1332.37.37.a1.a1
Order $ 2^{2} \cdot 3^{2} $
Index $ 37 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:C_9$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(37\)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a, a^{3}, b, c^{37}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_2\times C_{74}):C_9$
Order: \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \)
Exponent: \(666\)\(\medspace = 2 \cdot 3^{2} \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{37}.(C_{36}\times A_4)$
$\operatorname{Aut}(H)$ $C_3\times S_4$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\operatorname{res}(S)$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_2^2:C_9$
Normal closure:$(C_2\times C_{74}):C_9$
Core:$C_2^2$
Minimal over-subgroups:$(C_2\times C_{74}):C_9$
Maximal under-subgroups:$C_2\times C_6$$C_9$

Other information

Number of subgroups in this conjugacy class$37$
Möbius function$-1$
Projective image$(C_2\times C_{74}):C_9$