Properties

Label 133100.bt.121.a1
Order $ 2^{2} \cdot 5^{2} \cdot 11 $
Index $ 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{220}:C_5$
Order: \(1100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11 \)
Index: \(121\)\(\medspace = 11^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $a^{5}, d^{11}, a^{10}, a^{4}, c$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 5$, and an A-group.

Ambient group ($G$) information

Description: $C_5\times \He_{11}:C_{20}$
Order: \(133100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}.C_{60}.C_{10}.C_2^3$
$\operatorname{Aut}(H)$ $D_{110}:C_{20}$, of order \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
$W$$C_{11}:C_5$, of order \(55\)\(\medspace = 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{20}$
Normalizer:$C_{220}:C_5$
Normal closure:$C_5\times \He_{11}:C_{20}$
Core:$C_{55}$
Minimal over-subgroups:$C_5\times \He_{11}:C_{20}$
Maximal under-subgroups:$C_{110}:C_5$$C_{220}$$C_{11}:C_{20}$$C_5\times C_{20}$

Other information

Number of subgroups in this autjugacy class$121$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$\He_{11}:C_{20}$