Properties

Label 13310.x.10.a1
Order $ 11^{3} $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^3$
Order: \(1331\)\(\medspace = 11^{3} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(11\)
Generators: $b, d, cd^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), the Fitting subgroup (hence nilpotent, solvable, supersolvable, and monomial), the socle, a semidirect factor, abelian (hence metabelian and an A-group), a $11$-Sylow subgroup (hence a Hall subgroup), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_{11}^3:C_{10}$
Order: \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_5^3.C_2^3$
$\operatorname{Aut}(H)$ $\GL(3,11)$, of order \(2124276000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \cdot 7 \cdot 11^{3} \cdot 19 \)
$W$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_{11}^3$
Normalizer:$C_{11}^3:C_{10}$
Complements:$C_{10}$
Minimal over-subgroups:$C_{11}^3:C_5$$C_{11}^3:C_2$
Maximal under-subgroups:$C_{11}^2$$C_{11}^2$$C_{11}^2$$C_{11}^2$$C_{11}^2$$C_{11}^2$$C_{11}^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_{11}^3:C_{10}$