Properties

Label 1327104.fu.4096.A
Order $ 2^{2} \cdot 3^{4} $
Index $ 2^{12} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9:C_{36}$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(4096\)\(\medspace = 2^{12} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(2,8,18)(3,23,22,13,14,9,19,5,17)(7,15,12)(10,16,21), (3,13,19)(5,23,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Ambient group ($G$) information

Description: $C_2^{12}.C_9:C_{36}$
Order: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^{12}.C_9^2:C_6$, of order \(3981312\)\(\medspace = 2^{14} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $C_9:C_6^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$W$$C_9:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_9:C_{36}$
Normal closure:$C_2^{12}.C_9:C_{36}$
Core:$C_2$

Other information

Number of subgroups in this autjugacy class$4096$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^{12}.C_9:C_{18}$