Properties

Label 1327104.di.8.C
Order $ 2^{11} \cdot 3^{4} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4^2\wr C_2.C_2^2$
Order: \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(15,16)(17,18), (1,2)(5,6)(7,8)(11,12), (7,8)(11,12)(13,15,18)(14,16,17) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, nonabelian, solvable, and rational. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $A_4^2\wr C_2.C_2^2.C_2^3$
Order: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_3^4.C_2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_2^8.C_3^4.C_2^5.C_2^3$
$W$$A_4^2:\POPlus(4,3).C_2^3$, of order \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$A_4^2\wr C_2.C_2^2.C_2^3$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$A_4^2:\POPlus(4,3).C_2^3$