Properties

Label 1327104.di.16.A
Order $ 2^{10} \cdot 3^{4} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(82944\)\(\medspace = 2^{10} \cdot 3^{4} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: not computed
Generators: $\langle(15,16)(17,18), (1,2)(5,6)(7,8)(11,12), (7,8)(11,12)(13,15,18)(14,16,17) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $A_4^2\wr C_2.C_2^2.C_2^3$
Order: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(2\)
Automorphism Group: $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
Outer Automorphisms: $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_3^4.C_2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ not computed
$W$$A_4^2:\POPlus(4,3).C_2^3$, of order \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$A_4^2\wr C_2.C_2^2.C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4^2:\POPlus(4,3).C_2^3$