Properties

Label 1327104.by.2.J
Order $ 2^{13} \cdot 3^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4^2.S_4\wr C_2.C_4$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Index: \(2\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(5,6)(9,10), (15,23,20)(16,24,19), (15,16)(23,24), (1,6,9)(2,5,10)(15,23,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), maximal, nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^{10}.C_3^4:(C_2\times D_4)$
Order: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^8.C_3^4.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $C_2^8.C_3^4.C_2^5.C_2^3$
$W$$C_2\times A_4^2\wr C_2.D_4$, of order \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^{10}.C_3^4:(C_2\times D_4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times A_4^2\wr C_2.D_4$