Properties

Label 13200.p.25.a1
Order $ 2^{4} \cdot 3 \cdot 11 $
Index $ 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{11}\times D_{12}$
Order: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Index: \(25\)\(\medspace = 5^{2} \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Generators: $a^{5}, c^{12}, c^{33}, c^{66}, b^{5}, c^{88}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{132}:C_{10}^2$
Order: \(13200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_5^2$
Order: \(25\)\(\medspace = 5^{2} \)
Exponent: \(5\)
Automorphism Group: $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Outer Automorphisms: $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{330}.C_{10}.C_2^6$
$\operatorname{Aut}(H)$ $C_{66}.C_{10}.C_2^4$
$W$$D_6\times F_{11}$, of order \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{132}:C_{10}^2$
Complements:$C_5^2$
Minimal over-subgroups:$C_{220}:D_6$$D_{12}\times F_{11}$
Maximal under-subgroups:$S_3\times D_{22}$$C_{11}:D_{12}$$C_{11}\times D_{12}$$C_{12}\times D_{11}$$D_{132}$$D_4\times D_{11}$$C_2\times D_{12}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$5$
Projective image$C_{66}:C_{10}^2$