Properties

Label 13200.f.660.e1.a1
Order $ 2^{2} \cdot 5 $
Index $ 2^{2} \cdot 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 1 & 1 & 7 & 6 \\ 4 & 7 & 0 & 7 \\ 8 & 3 & 4 & 10 \\ 8 & 8 & 7 & 10 \end{array}\right), \left(\begin{array}{rrrr} 10 & 6 & 0 & 6 \\ 5 & 9 & 0 & 3 \\ 9 & 3 & 6 & 4 \\ 8 & 7 & 8 & 8 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $\SL(2,11):C_{10}$
Order: \(13200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_4\times \PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_5\times C_{20}$
Normalizer:$C_5\times C_{20}$
Normal closure:$\SL(2,11):C_{10}$
Core:$C_4$
Minimal over-subgroups:$C_{11}:C_{20}$$C_{11}:C_{20}$$C_5\times C_{20}$
Maximal under-subgroups:$C_{10}$$C_4$
Autjugate subgroups:13200.f.660.e1.b1

Other information

Number of subgroups in this conjugacy class$132$
Möbius function$0$
Projective image not computed