Properties

Label 13200.f.3300.a1.a1
Order $ 2^{2} $
Index $ 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(3300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rrrr} 1 & 1 & 7 & 6 \\ 4 & 7 & 0 & 7 \\ 8 & 3 & 4 & 10 \\ 8 & 8 & 7 & 10 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a $p$-group.

Ambient group ($G$) information

Description: $\SL(2,11):C_{10}$
Order: \(13200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Order: \(3300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: not computed
Automorphism Group: not computed
Outer Automorphisms: not computed
Nilpotency class: not computed
Derived length: not computed

Properties have not been computed

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_4\times \PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$\SL(2,11):C_{10}$
Normalizer:$\SL(2,11):C_{10}$
Minimal over-subgroups:$C_{44}$$C_{20}$$C_{20}$$C_{20}$$C_{20}$$C_{12}$$C_2\times C_4$
Maximal under-subgroups:$C_2$

Other information

Möbius function$-660$
Projective image not computed