Subgroup ($H$) information
| Description: | $C_4$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Index: | \(3300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$\left(\begin{array}{rrrr}
1 & 1 & 7 & 6 \\
4 & 7 & 0 & 7 \\
8 & 3 & 4 & 10 \\
8 & 8 & 7 & 10
\end{array}\right), \left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 10 & 0 & 0 \\
0 & 0 & 10 & 0 \\
0 & 0 & 0 & 10
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a $p$-group.
Ambient group ($G$) information
| Description: | $\SL(2,11):C_{10}$ |
| Order: | \(13200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \) |
| Exponent: | \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
| Order: | \(3300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) |
| Exponent: | not computed |
| Automorphism Group: | not computed |
| Outer Automorphisms: | not computed |
| Nilpotency class: | not computed |
| Derived length: | not computed |
Properties have not been computed
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_4\times \PSL(2,11).C_2$ |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $\SL(2,11):C_{10}$ | ||||||
| Normalizer: | $\SL(2,11):C_{10}$ | ||||||
| Minimal over-subgroups: | $C_{44}$ | $C_{20}$ | $C_{20}$ | $C_{20}$ | $C_{20}$ | $C_{12}$ | $C_2\times C_4$ |
| Maximal under-subgroups: | $C_2$ |
Other information
| Möbius function | $-660$ |
| Projective image | not computed |