Properties

Label 13200.f.12.a1.a1
Order $ 2^{2} \cdot 5^{2} \cdot 11 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{220}:C_5$
Order: \(1100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 0 & 6 & 9 & 4 \\ 1 & 5 & 10 & 9 \\ 5 & 7 & 1 & 5 \\ 8 & 5 & 10 & 6 \end{array}\right), \left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right), \left(\begin{array}{rrrr} 5 & 3 & 8 & 4 \\ 1 & 4 & 0 & 5 \\ 6 & 2 & 2 & 9 \\ 9 & 1 & 3 & 0 \end{array}\right), \left(\begin{array}{rrrr} 7 & 0 & 0 & 0 \\ 0 & 7 & 0 & 0 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 7 \end{array}\right), \left(\begin{array}{rrrr} 9 & 9 & 8 & 10 \\ 3 & 8 & 0 & 8 \\ 6 & 5 & 3 & 2 \\ 6 & 6 & 8 & 2 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 5$, and an A-group.

Ambient group ($G$) information

Description: $\SL(2,11):C_{10}$
Order: \(13200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_4\times \PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $D_{110}:C_{20}$, of order \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
$W$$C_{11}:C_5$, of order \(55\)\(\medspace = 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{20}$
Normalizer:$C_{220}:C_5$
Normal closure:$\SL(2,11):C_{10}$
Core:$C_{20}$
Minimal over-subgroups:$\SL(2,11):C_{10}$
Maximal under-subgroups:$C_{110}:C_5$$C_{220}$$C_{11}:C_{20}$$C_{11}:C_{20}$$C_{11}:C_{20}$$C_{11}:C_{20}$$C_{11}:C_{20}$$C_5\times C_{20}$

Other information

Number of subgroups in this conjugacy class$12$
Möbius function$-1$
Projective image$\PSL(2,11)$