Properties

Label 1320.30.30.b1.a1
Order $ 2^{2} \cdot 11 $
Index $ 2 \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{22}$
Order: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Index: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $a^{5}, b^{12}, b^{66}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{132}:C_{10}$
Order: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^3$
$\operatorname{Aut}(H)$ $S_3\times C_{10}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(44\)\(\medspace = 2^{2} \cdot 11 \)
$W$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{22}$
Normalizer:$C_{44}:C_{10}$
Normal closure:$S_3\times C_{22}$
Core:$C_{22}$
Minimal over-subgroups:$C_{22}:C_{10}$$S_3\times C_{22}$$D_4\times C_{11}$
Maximal under-subgroups:$C_{22}$$C_{22}$$C_2^2$
Autjugate subgroups:1320.30.30.b1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_{66}:C_{10}$