Properties

Label 1320.22.66.a1.a1
Order $ 2^{2} \cdot 5 $
Index $ 2 \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $b^{5}c^{33}, c^{22}, b^{2}c^{22}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{11}:C_5\times \SL(2,3)$
Order: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times F_{11}$, of order \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{20}$
Normalizer:$C_5\times Q_8$
Normal closure:$C_{44}.C_{10}$
Core:$C_2$
Minimal over-subgroups:$C_{11}:C_{20}$$C_5\times Q_8$
Maximal under-subgroups:$C_{10}$$C_4$

Other information

Number of subgroups in this conjugacy class$33$
Möbius function$0$
Projective image$A_4\times C_{11}:C_5$