Subgroup ($H$) information
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Index: | \(33\)\(\medspace = 3 \cdot 11 \) |
| Exponent: | \(2\) |
| Generators: |
$a, b^{33}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $2$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
| Description: | $D_{66}$ |
| Order: | \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \) |
| Exponent: | \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_6\times F_{11}$, of order \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
| $\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_2$, of order \(2\) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_2^2$ | ||
| Normalizer: | $C_2^2$ | ||
| Normal closure: | $D_{66}$ | ||
| Core: | $C_2$ | ||
| Minimal over-subgroups: | $D_{22}$ | $D_6$ | |
| Maximal under-subgroups: | $C_2$ | $C_2$ | $C_2$ |
Other information
| Number of subgroups in this conjugacy class | $33$ |
| Möbius function | $1$ |
| Projective image | $D_{33}$ |